TOROS ÜNİVERSİTESİ

Faculty Of Engineering Electrical And Electronics Engineering (English)

Course Information

DIGITAL SYSTEMS AND DESIGN						
Code	Semester	Theoretical	Practice	National Credit	ECTS Credit	
		Hour / Week				
EEE205	Fall	3	2	4	6	

Prerequisites and co- requisites	
Language of instruction	English
Туре	Required
Level of Course	Bachelor's
Lecturer	Asst. Prof. Ziya Gökalp Altun
Mode of Delivery	Face to Face
Suggested Subject	
Professional practise (internship)	None
Objectives of the Course	To develop the ability of analyzing combinational and sequential circuits and designing these circuits that satisfy given specifications under realistic conditions.
Contents of the Course	Digital systems and binary codes, Boolean algebra and logic gates, Karnaugh maps, combinational logic circuits - arithmetic circuits, decoders, encoders, MUX, DEMUX, flip flops, sequential logic circuits - registers, counters.

Learning Outcomes of Course

#	Learning Outcomes
1	Knowledge of Boolean algebra fundamentals, ability of writing Boolean functions in standard forms and simplifying them using Karnaugh maps.
2	Ability of analyzing combinational and sequential circuits, and commenting about the functions of these circuits.
3	Ability of designing combinational or sequential circuits which satisfy given specifications under realistic conditions such as minimum delay time, total count of logic gates etc.
4	Ability of presenting lab results in a proper technical report format.

Course Syllabus

#	Subjects	Teaching Methods and Technics		
1	1 Number Systems, Binary codes lecture, discussion, presentation			
2	Boolean Algebra, Logics gates	lecture, discussion, presentation		
3	Boolean functions and canonic forms	lecture, discussion, presentation		
4	4 Simplification of functions using Karnaugh maps lecture, discussion, presentation			
5 Analysis and design of combinational circuits lecture, discussion, presentation		lecture, discussion, presentation		
6 Arithmetic circuits lecture, discussion, presentation		lecture, discussion, presentation		
7	Magnitute comparators, MUX, DEMUX	lecture, discussion, presentation		
8	Subject repetitions, midterm			
9	Flip flops	lecture, discussion, presentation		
10	Analysis and design of sequential circuits	lecture, discussion, presentation		

11	Registers	lecture, discussion, presentation		
12	Synchronous counters	lecture, discussion, presentation		
13	Ring and Johnson counters, unordered counters	lecture, discussion, presentation		
14	Asynchronous counters, Memory components	lecture, discussion, presentation		
15				
16	Final Exam			

Course Syllabus

#	# Material / Resources Information About Resources		Reference / Recommended Resources				
1	Mano, M. Morris, Digital Design						

Method of Assessment

#	# Weight Work Type		Work Title		
1	40%	Mid-Term Exam	Mid-Term Exam		
2	60%	Final Exam	Final Exam		

Relationship between Learning Outcomes of Course and Program Outcomes

#	Learning Outcomes	Program Outcomes	Method of Assessment
1	Knowledge of Boolean algebra fundamentals, ability of writing Boolean functions in standard forms and simplifying them using Karnaugh maps.	2	1,2
2	Ability of analyzing combinational and sequential circuits, and commenting about the functions of these circuits.	2,3	1,2
3	Ability of designing combinational or sequential circuits which satisfy given specifications under realistic conditions such as minimum delay time, total count of logic gates etc.	3	1,2
4	Ability of presenting lab results in a proper technical report format.	4,6,7	1,2

PS. The numbers, which are shown in the column Method of Assessment, presents the methods shown in the previous table, titled as Method of Assessment.

Work Load Details

#	Type of Work	Quantity	Time (Hour)	Work Load
1	Course Duration	14	5	70
2	Course Duration Except Class (Preliminary Study, Enhancement)	14	3	42
3	Presentation and Seminar Preparation	0	0	0
4	Web Research, Library and Archival Work	0	0	0
5	Document/Information Listing	0	0	0
6	Workshop	0	0	0
7	Preparation for Midterm Exam	1	5	5
8	Midterm Exam	1	1	1
9	Quiz	0	0	0
10	Homework	0	0	0
11	Midterm Project	0	0	0
12	Midterm Exercise	0	0	0
13	Final Project	0	0	0
14	Final Exercise	0	0	0
15	Preparation for Final Exam	1	15	15

16 Final Exam	1	17	17
			150